Math 172: Inner Product Spaces, Symmetric Operators, Orthogonality

نویسنده

  • ANDRÁS VASY
چکیده

Definition 1. An inner product on a complex vector space V is a map 〈., .〉 : V × V → C such that (i) 〈., .〉 is linear in the first slot: 〈c1v1 + c2v2, w〉 = c1〈v1, w〉+ c2〈v2, w〉, c1, c2 ∈ C, v1, v2, w ∈ V, (ii) 〈., .〉 is Hermitian symmetric: 〈v, w〉 = 〈w, v〉, with the bar denoting complex conjugate, (iii) 〈., .〉 is positive definite: v ∈ V ⇒ 〈v, v〉 ≥ 0, and 〈v, v〉 = 0⇔ v = 0. A vector space with an inner product is also called an inner product space. While one should write (V, 〈.., .〉) to specify the inner product space, one typically says merely that V is an inner product space when the inner product is understood. For real vector spaces, one makes essentially the same definition, except that, as the complex conjugate does not make sense, one simply has symmetry: V real vector space ⇒ 〈v, w〉 = 〈w, v〉, v, w ∈ V. We also introduce the notation for the norm associated to this inner product: ‖v‖ = 〈v, v〉, where the square root is the unique non-negative square root of a non-negative number (see (iii)). Thus, 〈v, v〉 = ‖v‖. Recall that in general a norm is defined by:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$C^{*}$-semi-inner product spaces

In this paper, we introduce a generalization of Hilbert $C^*$-modules which are pre-Finsler modules, namely, $C^{*}$-semi-inner product spaces. Some properties and results of such spaces are investigated, specially the orthogonality in these spaces will be considered. We then study bounded linear operators on $C^{*}$-semi-inner product spaces.

متن کامل

Operators Reversing Orthogonality and Characterization of Inner Product Spaces

In this short paper we answer a question posed by Chmieliński in [Adv. Oper. Theory 1 (2016), no. 1, 8–14]. Namely, we prove that among normed spaces of dimension greater than two, only inner product spaces admit nonzero linear operators which reverse the Birkhoff orthogonality.

متن کامل

Fuzzy Inner Product and Fuzzy Norm \of Hyperspaces

We introduce and  study  fuzzy (co-)inner product and fuzzy(co-)norm of hyperspaces. In this regard by considering  the notionof hyperspaces, as a generalization of vector spaces, first we willintroduce the notion of fuzzy (co-)inner product in hyperspaces and will apply it to formulate the notions offuzzy (co-)norm and fuzzy (co-)orthogonality  in hyperspaces. Inparticular, we will prove that ...

متن کامل

Orthogonality preserving mappings on inner product C* -modules

Suppose that A is a C^*-algebra. We consider the class of A-linear mappins between two inner product A-modules such that for each two orthogonal vectors in the domain space their values are orthogonal in the target space. In this paper, we intend to determine A-linear mappings that preserve orthogonality. For this purpose, suppose that E and F are two inner product A-modules and A+ is the set o...

متن کامل

Inner Product Spaces and Orthogonality

1 Dot product of R The inner product or dot product of R is a function 〈 , 〉 defined by 〈u,v〉 = a1b1 + a2b2 + · · ·+ anbn for u = [a1, a2, . . . , an] , v = [b1, b2, . . . , bn] ∈ R. The inner product 〈 , 〉 satisfies the following properties: (1) Linearity: 〈au + bv,w〉 = a〈u,w〉+ b〈v,w〉. (2) Symmetric Property: 〈u,v〉 = 〈v,u〉. (3) Positive Definite Property: For any u ∈ V , 〈u,u〉 ≥ 0; and 〈u,u〉 =...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014